

Master Thesis

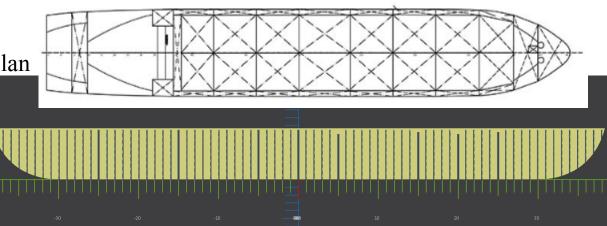
Automated Modelling of Ship Structures in Early Ship Design Phase

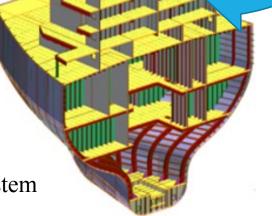
HANS PERUMANA THOMAS

8TH EMSHIP CYCLE: OCTOBER 2017 - FEBRUARY 2019

Supervisors: Prof. Dr.-Ing. Robert Bronsart, University of Rostock

Dr.-Ing. Michael Zimmermann, M V Werften, Wismar

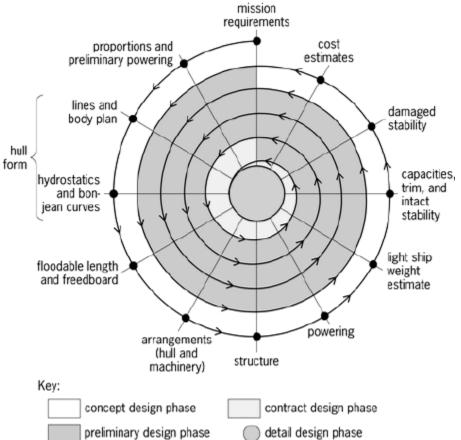

MOTIVATION


- Automate 3D modelling
- Structural Model in early design stage
- ➢ 3D structure model − Export for FEA
- > Preliminary global strength check at early design phase
- > Approx. margin in longitudinal strength Flexibility for designer
- Minimize human effort
 - No drawing preparation
 - Save time Miscellaneous calculations BOM, weld length, paint area, weight estimation etc.

SCOPE OF WORK

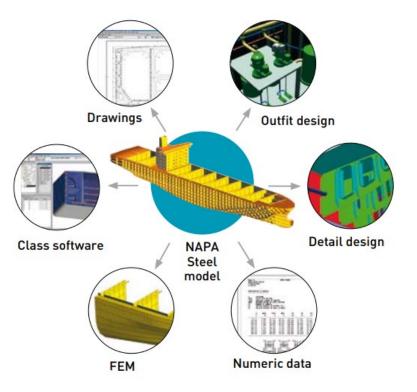
> INPUT

- Structural arrangement/General Arrangement Plan
- Scantling data
- 3D hull form
- > Spreadsheet Template Structural details
- Bridge Script Convert Spreadsheet data to 3D Structural Model
- > OUTPUT
 - 3D structural Model
 - Plate arrangement same as in General Arrangement Plan
 - Structural Members (Stiffeners/Girders) in line with reference framing system



Picture from: Home - Napa, 2018, www.napa.fi

CHALLENGES FOR 3D STRUCTURE MODELLING IN EARLY DESIGN STAGE


- Early Design Concept and preliminary stages
- > Short time period Few weeks
- > 3D Model Generated in detailed design
- Data available, but ... need plenty of human hours
- > Difficult to incorporate design revisions
- Lot of time structural details (bracket, manholes)

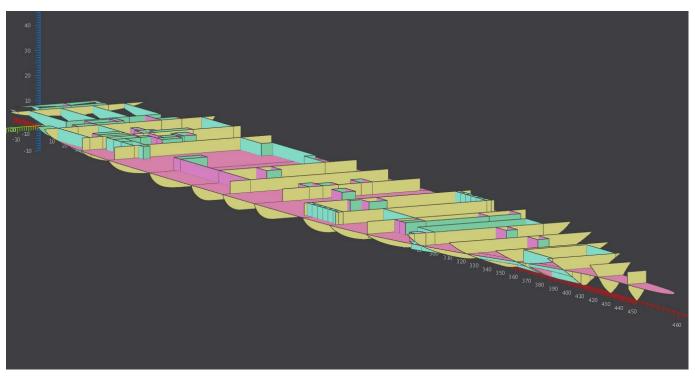
Picture from : Vossen, Christina & Kleppe, Robert & Randi Hjørungnes, Siv. Ship Design and System Integration, 2013

AUTOMATION - NAPA & FEATURES

- > Automation -3D structure modelling faster
- Implemented using NAPA C# scripting platform
- Steel model Early design stage
- Same model Different functions
 - Numeric data COG, BOM, weight, weld length etc
 - Idealized meshed model for FEA
 - 2D structure and plan drawings
- > NAPA interface complies major class rules

Picture from: Home - Napa, 2018, www.napa.fi

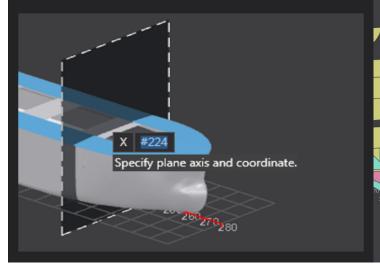
WORK FLOW


> Input Data

- 3D Hull Shape Hull form software
- General arrangement plan .dxf format
- Spreadsheet with structural details scantling calculation
- > 3D structure model generation
 - A. Generate horizontal decks
 - B. Create vertical walls Extrusion Tool
 - C. Automatic generation of structural members based on spreadsheet input
 - D. Modification of structure model Drawing revisions

GENERATE HORIZONTAL DECKS

- > Horizontal decks generated Required heights (eg: z = 5.0, 8.0)
- Decks trimmed Ship 3D hull form
- Assign structure type "DECK"
- > Whole deck Single piece

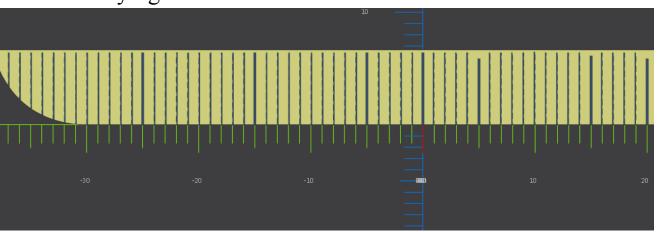

EXTRUSION TOOL – VERTICAL WALLS

- Import .dxf format general arrangement plan
- Each deck plan separately Workplane (eg: XY plane @ z=0)
- > Reference point to import Origin (0, 0, 0)
- > Each line extruded within min and max limits
- Vertical walls trimmed Ship hull form
- Important !!! Drawing quality
 - Continuous line Not broken or split
 - Connection between lines Proper
 - No deck boundaries

Workplane

A workplane is used as a drawing board when interacting with geometry. Many interactive operations require an active workplane for defining coordinates in the space.

A location can be defined either with mouse or keyboard input. Press X, Y or Z to change the orientation. A new workplane can also be created in the context menu of a highlighted object. Currently, only principal planes are supported.

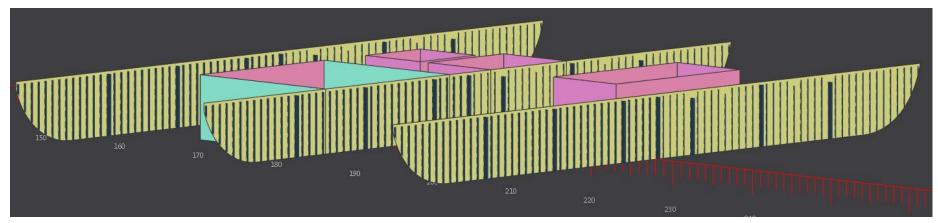

AUTOMATIC GENERATION OF STRUCTURAL MEMBERS

Bounding box – Based on limits

Limits & Structural Type							Stiffener			
Sl.No	MVZ	Z min	Z max	Y min	Y max	Туре	Stiffening	Moulded	Material	Profile Size
1	2	4.00	7.00	-25.00	25.00	LBH	VERTICAL	FRONT	AH32	FB150X10

Selection Criteria – Based on structure type (blank means all members)

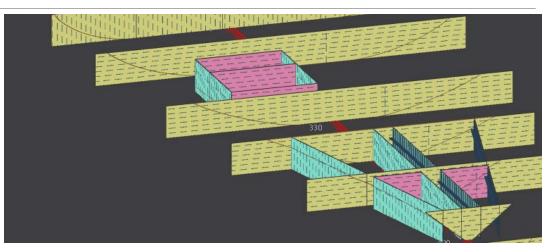
- > Select objects with COG inside bounding box Satisfying selection criteria
- Create trace lines Stiffening type
- Trace lines Reference framing system
- Generate stiffeners On trace lines
- Profile size, material and direction

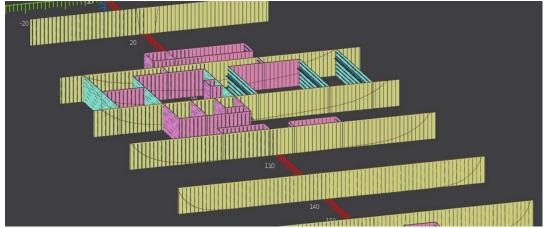


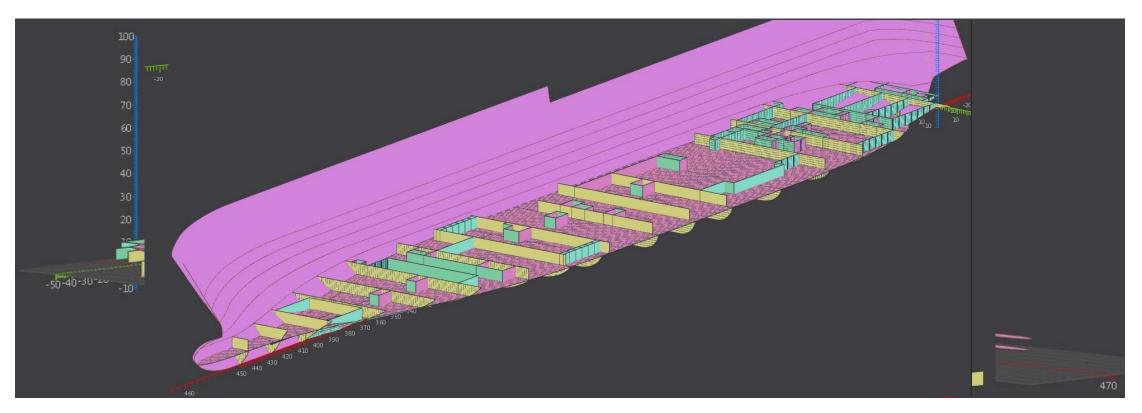
AUTOMATIC GENERATION OF STRUCTURAL MEMBERS

Same procedure for girders

	Limits & Structural Type							Girder				
Sl.No	MVZ	Z min	Z max	Y min	Y max	Туре	Stiffening	Moulded	Material	Girder Size	Girder Locations	
3	1	0.00	4.00	-25.00	25.00	TRANSBHD	VERTICAL	FRONT	А	400X10/150X15	6.0,-3.0	


- Longitudinal bulkhead Girders in web frames
- > Transverse bulkhead Girder may not be symmetric Location manually entered




MODIFICATION OF STRUCTURE MODEL -DRAWING REVISIONS

- Early design Lot of structural modifications
- Incorporate modifications Updated 3D model
- Modifying individual stiffeners Difficult
- Select plates Same stiffener size in revision
- Existing stiffeners and trace lines Deleted
- Based on input data New trace lines created
- > New stiffener/girder created on trace lines
- Structural model rapidly updated

VISUAL REPRESENTATION – WORK FLOW

SampSelesstalisheldered statistic st

CONSIDERATIONS TAKEN CARE OF

- Stiffener overlapping at girder Eliminated
- Stiffener overlapping with bulkheads Eliminated HP1
- Intersecting stiffeners sniped Continuity
- Stiffener orientation reference axis line
- Steel structure library members only
- Quality of GA plan Less manual effort

HP160X9	300X10/150X15	FB150X15
HP180X9	400X10/150X15	FB150X20
HP180X10	450X7/100X10	FB200X10
HP200X10	450X10/150X15	FB200X15
HP200X12	500X7/100X10	FB200X20
HP220X10	600X12/200X20	FB250X25
HP220X12	800X15/200X20	FB300X20
HP240X10	1000X15/250X25	FB300X25
HP240X12	1200X18/300X30	FB300X30

SUMMARY

- ▶ Rapid 3D structure model GA plan, hull form and scantling data
- Global strength members Plating, primary and secondary members
- Global strength check possible Early design stage
- > Automated modelling using scripting platform
- ➢ Easy to modify model − Client/class comments
- > Perceptible time saving -2 months to < a week
- ➢ Good early overview − Less rework − Shorter design spiral

FUTURE POSSIBILITIES

- > Automatically assign structure type Vertical Walls
- > Automatically assign brackets Connection type
- Generate Scallops automatically
- Include customized structural members
- > Modify existing stiffener in bulkhead Multiple new stiffener types

TO SUM UP

Rapid 3D structure model generation in early design stage

- Automated modeling to reduce time period from 2 months to < a week
- \succ Global strength influence considered \rightarrow less structural rework
- > Easy to maintain updated 3D structural model with design development